Loading...
Loading...

Transformer Models: BERT, GPT & Beyond

Transformer models now power 90% of state-of-the-art NLP systems (Google Research 2024). This tutorial explores the architecture, implementation, and applications of BERT, GPT, and their variants.

Transformer Model Adoption (2024)

BERT-style (45%)
GPT-style (35%)
Other (20%)

1. Transformer Architecture

Core Components:

  • Self-Attention: Context-aware word relationships
  • Multi-Head Attention: Parallel attention mechanisms
  • Positional Encoding: Captures word order
  • Encoder-Decoder: BERT (encoder), GPT (decoder)

Key Equations:

Attention(Q,K,V) = softmax(QKᵀ/√dₖ)V
MultiHead = Concat(head₁,...,headₕ)Wᵒ
where headᵢ = Attention(QWᵢᵩ, KWᵢᴷ, VWᵢⱽ)
        

PyTorch Implementation:


import torch.nn as nn

class SelfAttention(nn.Module):
    def __init__(self, embed_size, heads):
        super().__init__()
        self.embed_size = embed_size
        self.heads = heads
        self.head_dim = embed_size // heads
        
        self.values = nn.Linear(embed_size, embed_size)
        self.keys = nn.Linear(embed_size, embed_size)
        self.queries = nn.Linear(embed_size, embed_size)
        self.fc_out = nn.Linear(embed_size, embed_size)
        
    def forward(self, values, keys, query, mask):
        N = query.shape[0]
        value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]
        
        # Split into multiple heads
        values = self.values(values).view(N, value_len, self.heads, self.head_dim)
        keys = self.keys(keys).view(N, key_len, self.heads, self.head_dim)
        queries = self.queries(query).view(N, query_len, self.heads, self.head_dim)
        
        energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
        if mask is not None:
            energy = energy.masked_fill(mask == 0, float("-1e20"))
            
        attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3)
        out = torch.einsum("nhql,nlhd->nqhd", [attention, values])
        out = out.reshape(N, query_len, self.embed_size)
        return self.fc_out(out)
        

2. BERT & Encoder Models

Key Features:

Feature Description Impact
Masked LM Predict hidden words Bidirectional context
Next Sentence Prediction Sentence relationship Better discourse
WordPiece Tokenization Subword units Handles rare words

HuggingFace Implementation:


from transformers import BertTokenizer, BertForSequenceClassification
import torch

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')

inputs = tokenizer("Hello world!", return_tensors="pt")
with torch.no_grad():
    outputs = model(**inputs)
logits = outputs.logits
        

Variants:

RoBERTa (optimized pretraining), DistilBERT (smaller), ALBERT (parameter efficiency)

3. GPT & Decoder Models

Key Features:

Autoregressive

Predict next token

Enables generation

Causal Attention

Masked self-attention

Prevents cheating

Scaling Laws

More data → Better performance

Drives large models

Text Generation Example:


from transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')

input_ids = tokenizer.encode("The future of AI is", return_tensors='pt')
output = model.generate(input_ids, max_length=50, num_return_sequences=1)
print(tokenizer.decode(output[0], skip_special_tokens=True))
        

Transformer Model Comparison

Model Type Parameters Best For
BERT Encoder 110M-340M Classification, QA
GPT-4 Decoder 1.7T Text generation
T5 Encoder-Decoder 11B Text-to-text tasks
BART Encoder-Decoder 400M Summarization

4. Practical Applications

Implementation Techniques:

  • Fine-tuning: Adapt pretrained models
  • Implementation Techniques:

    • Fine-tuning: Adapt pretrained models
    • Prompt Engineering: Craft effective inputs for zero-shot learning
    • Model Distillation: Create smaller, faster models
    • Quantization: Reduce model size for deployment

    Real-World Use Cases:

    Text Classification

    
    # Sentiment analysis with BERT
    from transformers import pipeline
    classifier = pipeline("sentiment-analysis", 
                         model="distilbert-base-uncased-finetuned-sst-2-english")
    classifier("This tutorial is incredibly helpful!")

    Named Entity Recognition

    
    # NER with spaCy transformers
    import spacy
    nlp = spacy.load("en_core_web_trf")
    doc = nlp("Apple reached $2T market cap in 2023")
    print([(ent.text, ent.label_) for ent in doc.ents])

    Text Generation

    
    # Creative writing with GPT
    generator = pipeline("text-generation", model="gpt2")
    output = generator("In a future where AI governs humanity,", 
                      max_length=100,
                      num_return_sequences=1)

5. Advanced Topics & Future Directions

Emerging Architectures:

Model Innovation Advantage
Switch Transformers Mixture-of-Experts Efficient scaling
Perceiver IO Cross-modal attention Handles any input
RetNet Retentive networks Parallel + recurrent

Optimization Techniques:

  • Flash Attention: Faster attention computation
  • LoRA: Low-rank adaptation for efficient fine-tuning
  • 8-bit Inference: Memory-efficient deployment

Research Frontiers:

Multimodal

Text + Image + Audio

E.g. Flamingo, GPT-4V

Efficiency

Smaller, faster models

TinyBERT, MobileBERT

Reasoning

Chain-of-thought

Improved logic

Conclusion & Next Steps

Transformer models have revolutionized NLP and are expanding into other domains. Key takeaways:

  • Understand the attention mechanism that powers all transformers
  • Choose the right architecture (BERT, GPT, etc.) for your task
  • Leverage pretrained models through fine-tuning
  • Consider efficiency techniques for production deployment

Learning Resources:

Ready to implement? Start with these colab notebooks:

0 Interaction
0 Views
Views
0 Likes
×
×
🍪 CookieConsent@Ptutorials:~

Welcome to Ptutorials

$ Allow cookies on this site ? (y/n)

top-home