Loading...
Loading...

Neural Networks: From Fundamentals to Advanced Architectures

Neural networks power 92% of state-of-the-art AI systems (NeurIPS 2023). This tutorial progresses from single neurons to advanced architectures like Transformers, with implementation examples and industry applications.

Neural Network Model Complexity Growth (2012-2024)

AlexNet (2012): 60M
ResNet (2015): 25M
GPT-3 (2020): 175B
Gemini (2024): 1T+

1. Neural Network Fundamentals

Core Concepts:

  • Perceptron: Single neuron with inputs, weights, activation
  • Forward Pass: Computation flow: X → W → σ → Output
  • Backpropagation: Chain rule for gradient calculation
  • Universal Approximation: 1 hidden layer can approximate any function

Python Implementation:


import numpy as np

class NeuralNetwork:
    def __init__(self):
        self.weights = np.random.randn(3, 1)  # 3 inputs to 1 output
        self.bias = np.random.randn()
        
    def sigmoid(self, x):
        return 1 / (1 + np.exp(-x))
        
    def forward(self, X):
        return self.sigmoid(np.dot(X, self.weights) + self.bias)
        

Key Insight:

A single neuron can make linear decisions; stacked neurons create complex nonlinear decision boundaries

2. Deep Neural Networks

Advanced Components:

Component Purpose Innovation
Hidden Layers Feature hierarchy Automatic feature engineering
Dropout Regularization Random deactivation prevents overfitting
BatchNorm Training stability Normalizes layer inputs

PyTorch Implementation:


import torch.nn as nn

class DeepNN(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(784, 256),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(256, 128),
            nn.BatchNorm1d(128),
            nn.Linear(128, 10)
        )
        
    def forward(self, x):
        return self.net(x)
        

3. Specialized Architectures

Revolutionary Designs:

CNNs

Convolutional layers

For: Images, video

RNNs

Recurrent connections

For: Time series, text

Transformers

Attention mechanism

For: Language, multimodal

Transformer Block:


class TransformerBlock(nn.Module):
    def __init__(self, embed_size, heads):
        super().__init__()
        self.attention = nn.MultiheadAttention(embed_size, heads)
        self.norm1 = nn.LayerNorm(embed_size)
        self.norm2 = nn.LayerNorm(embed_size)
        self.ff = nn.Sequential(
            nn.Linear(embed_size, 4*embed_size),
            nn.ReLU(),
            nn.Linear(4*embed_size, embed_size))
        
    def forward(self, x):
        attn = self.attention(x, x, x)[0]
        x = self.norm1(attn + x)
        ff = self.ff(x)
        return self.norm2(ff + x)
        

Neural Network Zoo

Type Parameters Key Innovation Use Case
MLP 10³-10⁶ Basic feedforward Tabular data
ResNet 10⁷ Skip connections Image recognition
GPT-4 1.7T Transformer scaling Generative AI

4. Training at Scale

Advanced Techniques:

  • Mixed Precision: FP16/FP32 hybrid training
  • Gradient Accumulation: Simulate larger batches
  • Distributed Training: Data/model parallelism
  • LoRA: Efficient fine-tuning

PyTorch Lightning Example:


import pytorch_lightning as pl

class LitModel(pl.LightningModule):
    def __init__(self):
        super().__init__()
        self.model = TransformerBlock(embed_size=512, heads=8)
        
    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        loss = F.cross_entropy(y_hat, y)
        return loss
        
trainer = pl.Trainer(accelerator="gpu", devices=4, strategy="ddp")
trainer.fit(LitModel(), train_loader)
        

Neural Network Mastery Path

✓ Understand mathematical foundations
✓ Implement basic networks from scratch
✓ Master PyTorch/TensorFlow
✓ Experiment with major architectures
✓ Learn distributed training

Deep Learning Expert Insight: The 2024 AI Hardware Report shows that modern neural networks require 1000x more compute than a decade ago. Cutting-edge techniques like mixture-of-experts and sparse attention are pushing the boundaries of what's possible while managing computational costs.

0 Interaction
0 Views
Views
0 Likes
×
×
🍪 CookieConsent@Ptutorials:~

Welcome to Ptutorials

$ Allow cookies on this site ? (y/n)

top-home