Neural networks power 92% of state-of-the-art AI systems (NeurIPS 2023). This tutorial progresses from single neurons to advanced architectures like Transformers, with implementation examples and industry applications.
Neural Networks: From Fundamentals to Advanced Architectures
Neural Network Model Complexity Growth (2012-2024)
1. Neural Network Fundamentals
Core Concepts:
- Perceptron: Single neuron with inputs, weights, activation
- Forward Pass: Computation flow: X → W → σ → Output
- Backpropagation: Chain rule for gradient calculation
- Universal Approximation: 1 hidden layer can approximate any function
Python Implementation:
import numpy as np
class NeuralNetwork:
def __init__(self):
self.weights = np.random.randn(3, 1) # 3 inputs to 1 output
self.bias = np.random.randn()
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def forward(self, X):
return self.sigmoid(np.dot(X, self.weights) + self.bias)
Key Insight:
A single neuron can make linear decisions; stacked neurons create complex nonlinear decision boundaries
2. Deep Neural Networks
Advanced Components:
Component | Purpose | Innovation |
---|---|---|
Hidden Layers | Feature hierarchy | Automatic feature engineering |
Dropout | Regularization | Random deactivation prevents overfitting |
BatchNorm | Training stability | Normalizes layer inputs |
PyTorch Implementation:
import torch.nn as nn
class DeepNN(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(256, 128),
nn.BatchNorm1d(128),
nn.Linear(128, 10)
)
def forward(self, x):
return self.net(x)
3. Specialized Architectures
Revolutionary Designs:
CNNs
Convolutional layers
For: Images, videoRNNs
Recurrent connections
For: Time series, textTransformers
Attention mechanism
For: Language, multimodalTransformer Block:
class TransformerBlock(nn.Module):
def __init__(self, embed_size, heads):
super().__init__()
self.attention = nn.MultiheadAttention(embed_size, heads)
self.norm1 = nn.LayerNorm(embed_size)
self.norm2 = nn.LayerNorm(embed_size)
self.ff = nn.Sequential(
nn.Linear(embed_size, 4*embed_size),
nn.ReLU(),
nn.Linear(4*embed_size, embed_size))
def forward(self, x):
attn = self.attention(x, x, x)[0]
x = self.norm1(attn + x)
ff = self.ff(x)
return self.norm2(ff + x)
Neural Network Zoo
Type | Parameters | Key Innovation | Use Case |
---|---|---|---|
MLP | 10³-10⁶ | Basic feedforward | Tabular data |
ResNet | 10⁷ | Skip connections | Image recognition |
GPT-4 | 1.7T | Transformer scaling | Generative AI |
4. Training at Scale
Advanced Techniques:
- Mixed Precision: FP16/FP32 hybrid training
- Gradient Accumulation: Simulate larger batches
- Distributed Training: Data/model parallelism
- LoRA: Efficient fine-tuning
PyTorch Lightning Example:
import pytorch_lightning as pl
class LitModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.model = TransformerBlock(embed_size=512, heads=8)
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = F.cross_entropy(y_hat, y)
return loss
trainer = pl.Trainer(accelerator="gpu", devices=4, strategy="ddp")
trainer.fit(LitModel(), train_loader)
Neural Network Mastery Path
✓ Understand mathematical foundations
✓ Implement basic networks from scratch
✓ Master PyTorch/TensorFlow
✓ Experiment with major architectures
✓ Learn distributed training
Deep Learning Expert Insight: The 2024 AI Hardware Report shows that modern neural networks require 1000x more compute than a decade ago. Cutting-edge techniques like mixture-of-experts and sparse attention are pushing the boundaries of what's possible while managing computational costs.
×