Loading...
Loading...

Deep Learning with TensorFlow: The Complete Guide

TensorFlow powers 78% of production deep learning models (Google Cloud, 2024). This tutorial covers everything from basic operations to deploying production models with TensorFlow 2.x and Keras API.

TensorFlow Usage Distribution (2024)

Computer Vision (35%)
NLP (30%)
Recommendation Systems (20%)
Other (15%)

1. TensorFlow Fundamentals

Core Concepts:

  • Tensors: N-dimensional arrays (tf.Tensor)
  • Graph Execution: Define-and-run paradigm
  • Eager Mode: Immediate execution (default in TF 2.x)
  • Keras API: High-level model building

Basic Operations:


import tensorflow as tf

# Create tensors
a = tf.constant([[1, 2], [3, 4]])
b = tf.constant([[5, 6], [7, 8]])

# Matrix multiplication
c = tf.matmul(a, b)  # [[19, 22], [43, 50]]

# Automatic differentiation
with tf.GradientTape() as tape:
    tape.watch(a)
    y = tf.reduce_sum(a * 2)
grad = tape.gradient(y, a)  # [[2, 2], [2, 2]]
        

2. Building Models with Keras

Model Building Approaches:

Method Example When to Use
Sequential API model = Sequential([layers...]) Simple stacks
Functional API inputs = Input(); x = Dense()(inputs) Complex architectures
Model Subclassing class MyModel(Model):... Custom implementations

CNN Example:


from tensorflow.keras import layers, models

model = models.Sequential([
    layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
    layers.MaxPooling2D((2,2)),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
        

3. Training & Deployment

Production Workflow:

Data Pipeline

tf.data.Dataset

Optimized loading

Distributed Training

MirroredStrategy

Multi-GPU

Model Serving

TF Serving

Low-latency

End-to-End Example:


# Create dataset pipeline
train_ds = tf.data.Dataset.from_tensor_slices((X_train, y_train))
train_ds = train_ds.shuffle(1000).batch(32).prefetch(tf.data.AUTOTUNE)

# Train with callbacks
model.fit(train_ds, epochs=10,
          callbacks=[
              tf.keras.callbacks.ModelCheckpoint('model.keras'),
              tf.keras.callbacks.EarlyStopping(patience=3)
          ])

# Export for serving
tf.saved_model.save(model, 'saved_model')
        

TensorFlow Ecosystem Tools

Tool Purpose Key Feature
TensorFlow Lite Mobile/IoT Quantization
TensorFlow.js Browser WebGL acceleration
TFX ML Pipelines End-to-end orchestration
TensorBoard Visualization Training metrics

4. Advanced Techniques

Cutting-Edge Features:

  • Custom Training Loops: Fine-grained control
  • Mixed Precision: FP16/FP32 training
  • Distributed Strategies: Multi-worker training
  • TF Hub: Pretrained models

Custom Training Example:


@tf.function  # Graph compilation
def train_step(x, y):
    with tf.GradientTape() as tape:
        preds = model(x, training=True)
        loss = loss_fn(y, preds)
    grads = tape.gradient(loss, model.trainable_variables)
    optimizer.apply_gradients(zip(grads, model.trainable_variables))
    return loss
        
0 Interaction
0 Views
Views
0 Likes
×
×
🍪 CookieConsent@Ptutorials:~

Welcome to Ptutorials

$ Allow cookies on this site ? (y/n)

top-home