Loading...
Loading...

CNNs & RNNs: The Complete Architectures Guide

Convolutional and Recurrent Networks power 68% of all deep learning applications (MIT 2024). This tutorial compares these fundamental architectures, with implementation examples and industry use cases.

CNN vs RNN Adoption (2024)

CNNs (55%)
RNNs (30%)
Hybrid (15%)

1. Convolutional Neural Networks (CNNs)

Core Components:

  • Convolutional Layers: Learn spatial hierarchies (3x3, 5x5 filters)
  • Pooling Layers: Dimensionality reduction (MaxPool, AvgPool)
  • Feature Maps: Activation volumes (width × height × depth)
  • Flatten/Dense: Transition to classification

PyTorch Implementation:


import torch.nn as nn

class CNN(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
        self.fc1 = nn.Linear(64 * 56 * 56, 10)  # For 224x224 input
        
    def forward(self, x):
        x = self.pool(nn.ReLU()(self.conv1(x)))
        x = self.pool(nn.ReLU()(self.conv2(x)))
        x = x.view(-1, 64 * 56 * 56)
        return self.fc1(x)
        

Applications:

Image classification (ResNet), object detection (YOLO), medical imaging (DenseNet)

2. Recurrent Neural Networks (RNNs)

Key Concepts:

Component Function Innovation
Hidden State Memory of past Time-step persistence
LSTM Long-term memory Gates mechanism
GRU Efficient alternative Simpler than LSTM

TensorFlow Implementation:


from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

model = Sequential([
    LSTM(64, input_shape=(100, 10)),  # (timesteps, features)
    Dense(1, activation='sigmoid')
])

model.compile(loss='binary_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
        

3. Architecture Comparison

Key Differences:

CNNs

Spatial hierarchies

Best for: Grid-like data

RNNs

Temporal sequences

Best for: Time-series

Hybrid

ConvLSTM

Best for: Video analysis

Performance Characteristics:


# CNN vs RNN on different tasks
CNN_IMAGE_ACCURACY = 0.95  # e.g. ImageNet
RNN_TEXT_ACCURACY = 0.92   # e.g. Sentiment Analysis
HYBRID_VIDEO_F1 = 0.88     # e.g. Action Recognition
        

CNN vs RNN Cheat Sheet

Feature CNN RNN
Input Structure Grid (images) Sequence (text/time)
Parameter Sharing Convolution kernels Recurrent cells
Key Layers Conv2D, MaxPool LSTM, GRU
Computational Cost High (early layers) High (long sequences)

4. Modern Hybrid Architectures

Advanced Combinations:

  • ConvLSTM: Spatiotemporal features
  • CRNN: CNN feature extractor + RNN sequence model
  • Attention-Augmented: CNN with attention mechanisms

CRNN Implementation:


class CRNN(nn.Module):
    def __init__(self):
        super().__init__()
        # CNN backbone
        self.cnn = nn.Sequential(
            nn.Conv2d(1, 32, 3),
            nn.ReLU(),
            nn.MaxPool2d(2))
        # RNN head
        self.rnn = nn.LSTM(input_size=32*13, hidden_size=128)
        self.fc = nn.Linear(128, 10)
        
    def forward(self, x):
        x = self.cnn(x)
        x = x.view(x.size(0), -1, x.size(1))  # (batch, seq, features)
        x, _ = self.rnn(x)
        return self.fc(x[:, -1, :])
        

Architecture Selection Guide

✓ Use CNNs for spatial data (images, video frames)
✓ Use RNNs/LSTMs for sequential data (text, time-series)
✓ Consider hybrids for spatiotemporal tasks (video, medical)
✓ Evaluate transformer alternatives for long sequences

Deep Learning Architect Insight: The 2024 Computer Vision and Pattern Recognition Conference shows that modern systems increasingly combine CNNs with attention mechanisms (like Vision Transformers) rather than pure RNNs for sequence modeling, achieving 15-20% better performance on video understanding tasks.

0 Interaction
0 Views
Views
0 Likes
×
×
🍪 CookieConsent@Ptutorials:~

Welcome to Ptutorials

$ Allow cookies on this site ? (y/n)

top-home