Loading...
Loading...

Real-World AI Projects: From Concept to Production

87% of successful AI projects follow a structured deployment framework (McKinsey 2023). This tutorial walks through complete implementations across industries with executable code and architecture diagrams.

AI Project Success Factors (2023)

Data Quality (35%)
Model Selection (25%)
Infrastructure (20%)
Monitoring (20%)

1. Retail: Demand Forecasting

Key Components:

Component Technology Purpose
Feature Store Hopsworks/FEAST Historical sales data
Training Pipeline PyTorch Forecasting Temporal Fusion Transformer
Inference FastAPI + Redis Low-latency predictions

Implementation:


# Temporal Fusion Transformer
from pytorch_forecasting import TemporalFusionTransformer

model = TemporalFusionTransformer.from_dataset(
    training_dataset,
    hidden_size=32,
    lstm_layers=2,
    attention_head_size=4,
    dropout=0.1
)

# AWS SageMaker deployment
from sagemaker.pytorch import PyTorchModel

pytorch_model = PyTorchModel(
    model_data='s3://bucket/model.tar.gz',
    role=sagemaker_role,
    framework_version='1.8.0',
    entry_script='inference.py'
)

predictor = pytorch_model.deploy(
    instance_type='ml.m5.large',
    initial_instance_count=1
)
        

Monitoring:

Data Drift

Evidently AI

Weekly reports

Model Performance

MLflow

WAPE tracking

Business Impact

Looker Dashboard

Stockout reduction

2. Healthcare: Medical Imaging

Project Architecture:

  • Data Pipeline: DICOM → PNG conversion (PyDicom)
  • Annotation: CVAT with radiologists
  • Model: MONAI 3D UNet
  • Deployment: NVIDIA Clara

Implementation:


# MONAI 3D segmentation
from monai.networks.nets import UNet
from monai.losses import DiceLoss

model = UNet(
    spatial_dims=3,
    in_channels=1,
    out_channels=2,
    channels=(16, 32, 64, 128, 256),
    strides=(2, 2, 2, 2),
    num_res_units=2
)

loss_function = DiceLoss(to_onehot_y=True, softmax=True)
optimizer = torch.optim.Adam(model.parameters(), 1e-4)

# Federated Learning with NVIDIA FLARE
from nvflare.apis.dxo import DXO
from nvflare.app_opt.pt.client_api import PTFedClient

class MedicalClient(PTFedClient):
    def train(self, model, data):
        # Local training logic
        return DXO(data_kind=DataKind.WEIGHTS, data=model.state_dict())
        

Compliance Considerations:

HIPAA Security


# Data anonymization
import dicognito

anonymizer = dicognito.Anonymizer()
anonymizer.anonymize("input.dcm", "output.dcm")

Model Explainability


# Grad-CAM visualization
from monai.visualize import GradCAM

cam = GradCAM(nn_module=model, target_layers="conv_final")
result = cam(x=test_image, class_idx=1)

AI Project Stack Comparison

Industry Data Type Model Architecture Deployment Tool
Retail Tabular TFT, XGBoost SageMaker
Healthcare 3D Images UNet, ViT NVIDIA Clara
Manufacturing Time-Series LSTM Autoencoder Azure IoT Edge
Finance Graph GNN Kubeflow

3. Manufacturing: Predictive Maintenance

Implementation Framework:

  1. Edge Collection: IoT sensors → Kafka stream
  2. Feature Engineering: Rolling averages (Spark)
  3. Anomaly Detection: LSTM Autoencoder
  4. Alerting: PagerDuty integration

Code Implementation:


# LSTM Autoencoder
class AnomalyDetector(nn.Module):
    def __init__(self, input_dim=10, hidden_dim=64):
        super().__init__()
        self.encoder = nn.LSTM(input_dim, hidden_dim, batch_first=True)
        self.decoder = nn.LSTM(hidden_dim, input_dim, batch_first=True)
        
    def forward(self, x):
        encoded, _ = self.encoder(x)
        decoded, _ = self.decoder(encoded)
        return decoded

# Azure IoT Edge Deployment
from azure.iot.device import Message
from azure.iot.device.aio import IoTHubModuleClient

async def send_alert(anomaly_score):
    module_client = IoTHubModuleClient.create_from_edge_environment()
    await module_client.connect()
    message = Message(json.dumps({
        "machine_id": "CNC-27",
        "anomaly_score": anomaly_score,
        "timestamp": datetime.utcnow().isoformat()
    }))
    await module_client.send_message_to_output(message, "alertOutput")
        

ROI Calculation:

MTBF Increase +42%
Downtime Reduction -67%
Maintenance Cost -$380K/yr
0 Interaction
0 Views
Views
0 Likes
×
×
🍪 CookieConsent@Ptutorials:~

Welcome to Ptutorials

$ Allow cookies on this site ? (y/n)

top-home