Loading...
Loading...

Data Structures & Algorithms: Time & Space Complexity Mastery

This tutorial breaks down time and space complexity analysis with visualizations, code examples, and comparison charts. Learn to calculate Big-O notation for any algorithm and optimize your DSA solutions.

Complexity Class Distribution

O(n log n) (45%)
O(n) (30%)
O(n²) (15%)
O(1) (10%)

1. Complexity Fundamentals

Big-O complexity growth rates

Key Concepts:

  • Big-O Notation: Worst-case upper bound
  • Omega (Ω): Best-case lower bound
  • Theta (Θ): Tight bound (both upper and lower)

Common Complexity Classes:

Notation Name Example
O(1) Constant Array index access
O(log n) Logarithmic Binary search
O(n) Linear Simple loop
O(n log n) Linearithmic Merge sort

Complexity Rules:

1. Drop constants: O(2n) → O(n)
2. Drop non-dominant terms: O(n² + n) → O(n²)
3. Different inputs → different variables: O(a + b)
4. Nested loops multiply: O(n * m)

2. Time Complexity Analysis

Algorithm time complexity comparison

Code Analysis Examples:

O(1) - Constant


def get_first(arr):
    return arr[0]  # Single operation

O(n) - Linear


def find_max(arr):
    max = arr[0]
    for num in arr:  # n operations
        if num > max:
            max = num
    return max

O(n²) - Quadratic


def bubble_sort(arr):
    for i in range(len(arr)):          # n iterations
        for j in range(len(arr)-1):    # n iterations
            if arr[j] > arr[j+1]:
                arr[j], arr[j+1] = arr[j+1], arr[j]

Algorithm Complexity Guide:

Algorithm Best Case Average Case Worst Case
Quick Sort O(n log n) O(n log n) O(n²)
Merge Sort O(n log n) O(n log n) O(n log n)
Binary Search O(1) O(log n) O(log n)

3. Space Complexity Analysis

Memory usage growth patterns

Memory Usage Cases:

O(1) - Constant


def sum_pair(arr, target):
    hashset = set()  # Fixed size
    for num in arr:
        if target - num in hashset:
            return True
        hashset.add(num)
    return False

O(n) - Linear


def reverse(arr):
    result = []       # Grows with input
    for i in range(len(arr)-1, -1, -1):
        result.append(arr[i])
    return result

Recursive Space Complexity:


# O(n) space due to call stack
def factorial(n):
    if n <= 1:
        return 1
    return n * factorial(n-1)

# Tail recursion (O(1) with optimization)
def factorial_tail(n, acc=1):
    if n <= 1:
        return acc
    return factorial_tail(n-1, n*acc)

Complexity Cheat Sheet

Data Structure Access Search Insertion Deletion
Array O(1) O(n) O(n) O(n)
Hash Table O(1) O(1) O(1) O(1)
Binary Search Tree O(log n) O(log n) O(log n) O(log n)

4. Advanced Complexity Analysis

Amortized Analysis

Average cost over operations

Example: Dynamic array resizing

Space-Time Tradeoffs

Memoization & caching

DP vs recursive solutions

Parallel Complexity

Multi-threaded algorithms

Work-span model

Complexity Analysis Checklist

✓ Identify basic operations
✓ Count operations in terms of input size
✓ Determine fastest growing term
✓ Drop constants and lower order terms

Algorithm Expert Insight: In technical interviews, 92% of candidates fail to correctly analyze space complexity according to a 2023 study. Always consider both auxiliary space and input space when calculating total memory usage.

0 Interaction
0 Views
Views
0 Likes
×
×
×
🍪 CookieConsent@Ptutorials:~

Welcome to Ptutorials

$ Allow cookies on this site ? (y/n)

top-home